UCIe Chiplet Standard

BLU October, 2023 Shankar Viswanathan

What is a chiplet?

- A chiplet is a silicon die with a defined set of features along with an interface to connect to other chiplets
- Multiple chiplets are combined into a single package to provide the full functionality of the product

Traditional Monolithic

1st Gen EPYC CPU

Die 1

Die 0

2nd Gen EPYC CPU

Why chiplets?

- Lower cost: Chiplets are generally smaller and have better yield compared to large monolithic chips. Known good die used for packaging
- Reusable: Chiplets could be reused across multiple products
- Composable: Chiplets can be combined in different ways to create various SKUs
- Process optimization: chiplet could be fabricated on a process that is most optimal for that logic (power, performance, area/cost)

UCIe

- Universal Chiplet Interconnect Express
- Open specification for die-to-die connections between chiplets primary goal is to enable use of chiplets from different vendors in a single package
 - <u>https://www.uciexpress.org</u>
- Initially developed by AMD, ARM, GCP, Intel, Meta, Qualcomm, Samsung, TSMC, etc. (NVIDIA joined later)
- Version 1.0 released in early 2022, 1.1 in August 2023

UCIe Transport and Packaging

Protocols

- UCIe natively maps PCIe and CXL (io, mem, and cache)
- Also defines streaming protocol to map other protocols
- Work continues to define other protocols based on current and future use cases

UCIe Usage Models

SoC Package level construction for wide range of usages from Hand-held to high-end servers ✓ Mix and match dies from multiple sources with different packaging options

Provision to extend off-package with UCle Retimers connecting to other media (e.g., optics, electrical cable, mmWave)

UCIe characteristics

CHARACTERISTICS	STANDARD PACKAGE	ADVANCED PACKAGE	COMMENTS
Data Rate (GT/s)	4, 8, 12, 16, 24, 32		Lower speeds must be supported -interop (e.g., 4, 8, 12 for 12G device)
Width (each cluster)	16	64	Width degradation in Standard, spare lanes in Advanced
Bump Pitch (um)	100 - 130	25 - 55	Interoperate across bump pitches in each package type across nodes
Channel Reach (mm)	<= 25	<=2	

KPIS / TARGET FOR KEY METRICS	STANDARD PACKAGE	ADVANCED PACKAGE	COMMENTS
B/W Shoreline (GB/s/mm)	28 - 224	165 - 1317	Conservatively estimated: AP: 45u; Standard: 110u; Proportionate to data rate (4G - 32G)
B/W Density (GB/s/mm ²)	22-125	188-1350	
Power Efficiency target (pJ/b)	0.5	0.25	
Low-power entry/exit latency	0.5ns <=16G, 0.5-1ns >=24G		Power savings estimated at >= 85%
Latency (Tx + Rx)	< 2ns		Includes D2D Adapter and PHY (FDI to bump and back)
Reliability (FIT)	0 < FIT (Failure In Time) << 1		FIT: #failures in a billion hours (expecting ~1E-10) w/ UCIe Flit Mode

UCIe Chiplet Standard

BLU October, 2023 Shankar Viswanathan

What is a chiplet?

- A chiplet is a silicon die with a defined set of features along with an interface to connect to other chiplets
- Multiple chiplets are combined into a single package to provide the full functionality of the product

Why chiplets?

- Lower cost: Chiplets are generally smaller and have better yield compared to large monolithic chips. Known good die used for packaging
- Reusable: Chiplets could be reused across multiple products
- Composable: Chiplets can be combined in different ways to create various SKUs
- Process optimization: chiplet could be fabricated on a process that is most optimal for that logic (power, performance, area/cost)

UCIe

- Universal Chiplet Interconnect Express
- Open specification for die-to-die connections between chiplets primary goal is to enable use of chiplets from different vendors in a single package
 - https://www.uciexpress.org
- Initially developed by AMD, ARM, GCP, Intel, Meta, Qualcomm, Samsung, TSMC, etc. (NVIDIA joined later)
- Version 1.0 released in early 2022, 1.1 in August 2023

UCIe Transport and Packaging

Protocols

- UCIe natively maps PCIe and CXL (io, mem, and cache)
- Also defines streaming protocol to map other protocols
- Work continues to define other protocols based on current and future use cases

UCIe Usage Models

Provision to extend off-package with UCle Retimers connecting to other media (e.g., optics, electrical cable, mmWaye)

Source: UCIe whitepaper

UCIe characteristics

CHARACTERISTICS	STANDARD PACKAGE	AD VANCED PACKAGE	COMMENTS
Data Rate (GT/s)	4, 8, 12, 16, 24, 32		Lower speeds must be supported -interop (e.g., 4, 8, 12 for 12G device)
Width (each cluster)	16	64	Width degradation in Standard, spare lanes in Advanced
Bump Pitch (um)	100 - 130	25 - 55	Interoperate across bump pitches in each package type across nodes
Channel Reach (mm)	<= 25	<=2	
KPIS / TARGET FOR KEY METRICS	STANDARD PACKAGE	AD VANCED PACKAGE	COMMENTS
B/W Shoreline (GB/s/mm)	28 - 224	165 - 1317	Conservatively estimated: AP: 45u; Standard: 110u; Proportionate to
B/W Density (GB/s/mm ²)	22-125	188-1350	data rate (4G - 32G)
Power Efficiency target (pj	/b) 0.5	0.25	
Low-power entry/exit later	ocy 0.5ns <=16G,	0.5-1ns >=24G	Power savings estimated at >= 85%
Latency (Tx + Rx)	< 2ns		Includes D2D Adapter and PHY (FDI to bump and back)
Reliability (FIT)	0 < FIT (Failure In Time) << 1		FIT: #failures in a billion hours (expecting ~1E-10) w/ UCIe Flit Mode

Source: UCIe whitepaper