## RYZEN

Shankar Viswanathan BLU - 2020/05/20

## Outline

- Ryzen product family
- Zen CPUs
- Ryzen architecture
- Chiplets
- Ryzen APUs


## Ryzen Products

- Ryzen Desktop products
- CPUs and APUs
- Threadripper
- Ryzen Mobile
- For laptops - usually are all APUs
- Ryzen Embedded


## CPU Product Nomenclature

- Zen core - 14 nm
- Ryzen 3/5/7 1xxx (Summit Ridge)
- Threadripper 19xx
- Zen+ core - 12nm
- Ryzen 3/5/7 2xxx (Pinnacle Ridge)
- Threadripper 29xxx
- Zen2 core - 7nm CCD
- Ryzen 3/5/7/9 3xxx (Matisse)
- Threadripper 39xx


## APU Product Nomenclature

- Zen core, Vega GFX ("Raven Ridge")
- Desktop: Ryzen (Pro) 3/5 2xxxG
- Mobile: Ryzen (Pro) 3/5/7 2xxxU/H
- Zen+ core, Vega GFX ("Picasso")
- Desktop: Ryzen (Pro) 3/5 3xxxG
- Mobile: Ryzen (Pro) 3/5/7 3xxxU/H
- Zen2 core, Vega GFX ("Renoir")
- Desktop: Not yet released
- Mobile: Ryzen (Pro) 3/5/7 4xxxU/H


## Cool Fact

- All Zen/Zen+/Zen2 based desktop products are socket AM4 compatible
- Applies to both CPUs and APUs
- Also to monolithic APU dies as well as new chiplet architecture in Matisse


## Zen Cores



## Zen Design Target

## "ZEN"



## Zen Roadmap



## Zen ${ }^{2}$

## MICROARCHITECTURAL HIGHLIGHTS

- New TAGE branch predictor
- 2x op cache capacity
- Reoptimized L1I cache
- 3rd address generation unit
- 2x FP data path width
- 3x L1 load+store bandwidth
- 2x L3 capacity
- Improved prefetch throttling
- 2 threads per core (SMT) carried forward


## 15\% IPC IMPROVEMENT FROM "ZEN" TO "ZEN 2"



## CPU Complex and Cache Hierarchy



| Core 0 | L2 <br> 512 KB | L3 Slice <br> 4MB | L3 Slice <br> 4MB | L2 <br> 512 KB | Core 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Core 2 | L2 <br> 512 KB | L3 Slice <br> 4 MB | L3 Slice <br> 4 MBB | L2 <br> 512 KB | Core 3 |
|  |  |  |  |  |  |

- Each core has individual L1-I, L1-D and L2 caches

| CCX |
| :---: |
| (4C8T, 16MB L3) |
| INFINITY FABRIC PHY |
| (DIE-TO-DIE) |
| CCX |
| (4C8T, 16MB L3) |

## Chiplet Design



Each IP in its Optimal Technology

Infinity Fabric™ Enables
Modularity (MCM),
Scaling (CCD Count)

Optimized I/O Die Enables Common Latency to All Cores/Caches

## Chiplet Flexibility



Matisse Single CCD


Matisse
Dual CCDs


Rome
8 CCDs
Larger IOD

## Matisse CPU



## Ryzen 3xxx CPU ("Matisse")

- A Desktop SoC and a Chipset
- IOD combined with CCD(s) form the CPU
- Standalone IOD re-purposed as Chipset
- Leading I/O
- 48GB/s native PCle ${ }^{\text {TM }}$ BW
- 4 USB 3.1 10Gb/s ports
- Memory BW
- 51.2 GB/s Memory BW
- Dual Channel DDR4 3200 MT/s
- Overclocking
" Improved Memory overclocking (Phy, Package)
- De-coupled various IO-die clocks for flexibility
- AM4 Platform Longevity
" Compatible with AM4 platform



## Matisse: System Connectivity



[^0]† Does not support multi-lane or "lane bonding"

## Desktop Performance Improvement

## Application Performance

 In Power Efficient TDP- Compute heavy workloads benefit from power efficient design
- Content Creation, Rendering benchmarks see large gains
- Additional cores in 3900X deliver substantial compute power

HIGHER IS BETTER


LOWER IS BETTER


## Benefits from PCIe Gen4

## IO Performance

- Up to 2x PCle BW vs prior Ryzen generation

Storage Performance

- Large Block Sequential accesses are severely limited by link speeds


## 3DMark® PCle Feature Test

- Vertex animation (game VFX) is sensitive to bus bandwidth, allowing significant upside


## DaVinci Resolve

- Bus bandwidth is a significant limiting factor for non-linear editing (NLE) performance


## Renoir APU



## Ryzen 4xxx APU ("Renoir")



## CPU performance



## Laptop iGPU Gaming Performance

FPS 1080P LOW SETTINGS


More questions?

Backup

## Old "Integrated Graphics" Architecture




[^0]:    *Configurations vary with model. Diagram is representative of Zen 2 CPUs. Always refer to Motherboard Design Guide for specific implementations.

