IPv6 Home Networking

Daniel Hagerty hag@linnaean.org

IPv6 Networks I Have Known

- Setup MIT AI Lab in 1999 with MIT SIPB as upstream towards 6bone. Look ma, I can ping6!
- Used 6to4 and Hurricane Electric to run it at home in 2007.
- Provisioned Cambridge Bandwidth Consortium's (AS10255) coreward BGP, colocation subnets, and member tunnels.
- Starting in on my employer. Next step is training.

HE Registration

HE.net IPv6 Tunnel Broker Registration				
After successfully completing registration, an email will be sent to the listed email address with your account password. * = Required Information				
* Email:				
* First Name:				
* Last Name:				
Company Name:				
* Country:	Select One \$			
* Address:				
* City:				
* State/Region:				
* ZIP/Postal Code:				
* Phone:				
I have read and agreed to the <u>Terms of Service</u>				
Register				

HE Tunnel Creation

Create New Tunnel				
You currently ha	ve 2 of 5 tunnels configured.			
 If you are trying to reclaim a tunnel sir any issues please email ipv6@he.net If you have a public ASN and wish to instead. 		STATES OF A STATES AND A STATES		
IPv4 Endpoint (Your side):	18.111.38.249			
You are viewing from:		18.111.38.249		
We recommend you use:	Ashburn	n, VA, US [216.66.22.2]		
Available Tunnel Servers:	Asia			
	 Hong Kong, HK Singapore, SG Tokyo, JP 	216.218.221.6 216.218.221.42 74.82.46.6		
	Europe			
	 Amsterdam, NL Berlin, DE Frankfurt, DE London, UK Paris, FR Prague, CZ Stockholm, SE Warsaw, PL Zurich, CH 	216.66.84.46 216.66.86.114 216.66.80.30 216.66.80.26 216.66.84.42 216.66.86.122 216.66.80.90 216.66.80.162 Not Available (Full)		
	North America			
	 Ashburn, VA, US Chicago, IL, US Dallas, TX, US Denver, CO, US 	216.66.22.2 209.51.181.2 216.218.224.42 184.105.250.46		

HE Tunnel Creation on OS-X

Create a generic tunnel interface
ifconfig gif0 create

What are the v4 tunnel endpoints (local, remote)?
ifconfig gif0 tunnel 18.111.38.249 216.66.22.2

Assign v6 addresses
ifconfig gif0 inet6 2001:470:7:7e2::2 \
 2001:470:7:7e2::1 prefixlen 128

Tunnel is default route to v6 internet route -n add -inet6 default 2001:470:7:7e2::1

and from there, it just works, modulo your firewall. These are their instructions for this OS. YOSWV # Firewall example for ipfw add 02125 permit ip4 from 216.66.22.2 to \ 18.111.38.249 proto ipv6 in recv re0 add 03050 permit ip4 from 18.111.38.249 to \ 216.66.22.2 proto ipv6 out xmit re0

You probably already run it

```
$ ping6 -c 2 -w 10 ff02::1%eth0
PING ff02::1%eth0(ff02::1) 56 data bytes
64 bytes from fe80::2e0:81ff:fe80:b398: icmp_seq=1
ttl=64 time=0.040 ms
64 bytes from fe80::230:48ff:fe99:5d53: icmp_seq=1
ttl=64 time=0.070 ms (DUP!)
[...]
64 bytes from fe80::66b9:e8ff:fecd:b084:
icmp_seq=1 ttl=64 time=0.668 ms (DUP!)
64 bytes from fe80::3e07:54ff:fe62:afe: icmp_seq=1
ttl=64 time=0.670 ms (DUP!)
64 bytes from fe80::426c:8fff:fe50:67ba:
icmp_seq=1 ttl=64 time=0.812 ms (DUP!)
^C
--- ff02::1%eth0 ping statistics ---
1 packets transmitted, 1 received, +22 duplicates,
0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.040/0.279/0.812/0.207 ms
```

Saved from grief by v6

- We recently misconfigured a power control box's v4 net. Apparently unreachable.
- But our switch said it was alive and had a MAC.
- It spoke v6, as revealed by ping6 ff02::1.
- It supported logins via v6.
- Login over v6, fix typo'd address, move on.
- General reset procedure would not have been fun, given the critical hosts on the power box.

What's Changed Since 2010?

- No more google whitelist.
- Netflix, yahoo, facebook, akamai, wikipedia, etc
- Much more traffic at home
- v6 service available from work's last two ISPs
- Comcast reports 50% of its network is v6 capable, and is deploying to customers
- TimeWarner is deploying to customers
- T-Mobile has 100% coverage
- Verizon over LTE in some areas

Generic v6 algorithm

- Get IPv6 to your border. Native, tunnel.
- Enable it on the border box you control (firewall, frequently).
- But your topology doesn't have to be congruent.
- Number internal interfaces
- Either statically number internal hosts, use RA, or play with DHCPv6.
- Put AAAA records in DNS.
- Mail is a good first app, because it's a naturally robust design.

Why is Comcast eager for v6?

- RFC1918 provides 18 million addresses
- Comcast has 20 million video customers with an average of 2.5 set-top boxes per customer which need 2 IP addresses per box == 100 million addresses
- This doesn't account for the network that connects these boxes, or their VOIP offering, or their internet service.
 - Alain Durand at NANOG37
- Amazon, Google, and more have the same problem.

Programming

- Same old low level socket routines. Use PF_INET6, and struct sockaddr_in6.
- New, multi-protocol, thread-safe host/address resolution routines:

gethostbyname \rightarrow getaddrinfo

gethostbyaddr \rightarrow getnameinfo

- Your favorite languages probably have bindings.
- Where you used one IPv4 socket, you may need a socket per address family now.

getaddrinfo output

\$ getaddrinfo --stream --service http \ www.google.com Resolved host 'www.google.com', service '80' socket(AF_INET , SOCK_STREAM, IPPROTO_TCP) + \setminus 173.194.75.147:80 $socket(AF_INET, SOCK_STREAM, IPPROTO_TCP) + \setminus$ 173.194.75.103:80 socket(AF_INET , SOCK_STREAM, IPPROTO_TCP) + \ '173.194.75.99:80' socket(AF_INET, SOCK_STREAM, IPPROTO_TCP) + \ 173,194,75,104:80 socket(AF_INET , SOCK_STREAM, IPPROTO_TCP) + \ 173.194.75.106:80 socket(AF_INET , SOCK_STREAM, IPPROTO_TCP) + \ 173,194,75,105:80 socket(AF_INET6, SOCK_STREAM, IPPROTO_TCP) + \setminus '[2607:f8b0:400c:c01::6a]:80'

Output has been wrapped

Perl Server Example

```
use IO::Socket;
use IO::Socket::IP;
my @listener common = (
    Listen => TRUE,
    LocalPort => $port_number,
    ReuseAddr => TRUE,
    );
$listener6 = IO::Socket::IP->new(
  @listener_common,
  Domain => PF_INET6,
  V6Only => TRUE,
   ) | die "socket(PF_INET6): $!";
$listener4 = IO::Socket::IP->new(
    @listener_common,
    Domain => PF_INET,
    ) | die "socket(PF_INET): $!";
```

Select loop here

IPv6 Ups and Downs: Ups

- It's a network protocol. When it does its job, you don't think about it.
- My wife uses it and doesn't notice.
- Can directly address house "internal" machines from IPv6 networks.
- >50% of incoming email received over v6.
- google, facebook, yahoo, wikipedia, netflix, comcast all running production IPv6.
- My house has exceeded 50% v6 traffic on some days. Youtube + Netflix.

What's new for the v4 clued

- IPv6 is mostly IPv4 with bigger addresses, however:
 - Link local addresses
 - Extensive use of multicast
 - Link scoping to help target the above
 - Stateless address auto configuration (SLAAC)
 - Router advertisements
 - Multiple addresses per interface is typical
- This isn't a complete list, but are the differences
 I see all the time.

Bigger Addresses

- 128 bits long, 4 times bigger than IPv4
- Represented in hex, not decimal
- Verbosely represented as 2001:0db8:b009:0000:0000:0000:0000:0006a
- Some tricks to make them smaller, but the real world still gives you addresses like 2001:470:8917:8:216:cbff:feb7:ae2b

Address Compression

- You can leave off leading zeros of digit groups: "fd00::0123" and "fd00::123" are equivalent.
- You can compress a run of zeros with "::" ONCE, and the run has to be 16 bit aligned. For example, the fd00:: example above. If you have "2001:db8:0:0:0:1:0:0", "2001:db::1:0:0" is valid, "2001:db8:0:0:0:1::" is legal, but "2001:db8::1::" is not.
- You can use IPv4 notation for the last 32 bits of an address, e.g. 2001:db8::192.0.2.255 is legal. Same address as 2001:db8::c000:2ff.

Prefixes You'll Probably See

v6 Prefix	v4 Approx Equiv	Notes
::	0.0.0.0	Unspecified/IN_ADDR_ANY
::1	127.0.0.1	Loopback
::ffff:0.0.0.0/96		v4 mapped onto v6 sockets
2001:db8::/32	192.0.2.0/24	Documentation Prefix
fc00::/7	10/8, 172.16/12, 192.168/16	Local Unicast (ULA)
fe80::/10	169.254.0.0/16	Link Local
ff00::/8	224.0.0.0/4	Multicast

Address Allocation

- Warm and breathing? You can get a /48 (2.5 ipv4 internets; 65536 64 bit subnets)
- Residential policy allows /56
- Preference for nibble-aligned delegations for operation ease. /36, /40, /44, /48, etc.
- Traditional v4-like PA/PI assignments available.
- Roughly 281 trillion /48s available
- Expect much assessment when 2000::/3 is about gone (35 trillion /48s, 2000 per person at 17e9 people). I'm guessing it will take a bit.

Routable Unicast Space

Prefix	Usage
2000::/3	Global unicast
2001:0::/32	Teredo
2001:db8::/32	Documentation Prefix
2002::/16	6to4
3ffe::/16	6bone (deprecated)

 4000::/3 through c000::/3 are reserved, as are several other smaller holes. We have 5 tries at address allocation before we need to do IP over again.

Link Local Addresses (fe80::/10)

- Like IPv4's 169.254.0.0/16 prefix, but used extensively.
- Every single IPv6 interface has one as part of configuration.
- Link scoped, meaning the address is relative to an interface. fe80::1 on one link might be a different host than fe80::1 on another link.
- Routing protocols often use them.

Multicast (ff00::/8)

- IPv6 does away with broadcast entirely.
- ff02::1 is the multicast equivalent of an IPv4 broadcast.
- Like link local addresses, they require link scoping.
- Propagation scoping is encoded in the 4th octet: e.g. the "2" in ff02:: addressed packets confines them to the link they were sent on (like 224.0.0.0/24 in IPv4).

Link Scoping

- You need to specify an interface for link local and multicast addresses.
- Append "%" and an interface name to the address.
- For example, "ping6 ff02::1%eth0" should get ping responses from everything in eth0's broadcast domain.
- Interface names are OS specific. Windows uses integers.

Autoconfiguration

- All hosts can use link local addresses to communicate across a single subnet with no central planning.
- The main ingredient for inventing unique addresses is the EUI-64, a 64 bit hardware identifier. Firewire uses it natively.
- Ethernet MACs can be promoted to EUI-64 by inserting "ff:fe" into the middle, after the OUI.
- Only works with /64 prefixes.

Router Advertisements (RA)

- Routers tell clients the prefixes in use and clients build themselves addresses with them.
- Clients route to the routers they see, even if it's a broken laptop somebody has been experimenting with.
- This isn't anything like DHCP.

DHCPv6

- There is one.
- It's late to the party.
- Support is spotty.
- MS Vista or higher, $OS-X \ge 10.7$.
- Haven't played with it yet; SLAAC works, and half of my machines don't do it without effort.
- DHCP and IPv6 evolved concurrently, and didn't cross pollinate until pretty late.

DHCP Prefix Delegation

- DHCP option for delegation of address space for routed subnets downstream of the requesting DHCP client.
- It supposedly can work.
- Microsoft supports it when using ICS.
- ISC dhcpv6 supports it.
- Promising, but I'd expect some blood.

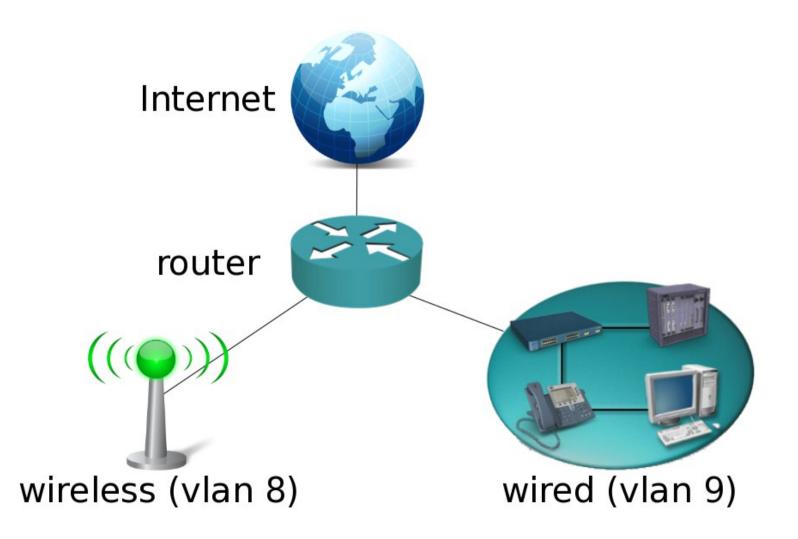
DHCPv6 vs RA

- Religion. Different constituents want different things.
- Purists hate the DHCP model and implementation. Pragmatists want the purists to suggest something that meets their needs, as RA doesn't do it yet.
- For example, DNS servers (!!) were only recently added to RA. DHCP has many, many standard options.

Unique Local Addresses (ULA)

- More or less RFC1918 for IPv6.
- 40 random bits in the prefix
- Much less likely to collide than RFC1918 addresses when used for private interconnect, mergers, etc.
- There's a "registry" where a further hint that a prefix is in use can be documented.

IPv6 info in DNS


- Works roughly the same as it did in v4: there's an address record for forward, and a PTR record for reverses.
- Reverses are split by each hex digit. Use host!
- Forward:

perdition IN AAAA 2001:470:8917:1::1

• Reverse:

\$ORIGIN 7.1.9.8.0.7.4.0.1.0.0.2.ip6.arpa.

Home Network

Home Network

- Router advertisements required configuring addresses on the subnets, and starting a daemon with no options. There was a surprise, in that all v6 hosts IMMEDIATELY used it.
- Initially, I didn't expose my v6 DNS to the public, but eventually I exposed individual services over the course of a couple of months. Nothing terribly exciting.

IPv6 Connection Methods

- Native; mostly stop here if you can get it.
 Cogent may be an exception.
- Static tunnel providers like Hurricane or Sixxs
- 6to4 (deprecated)
- Teredo; single host only.

Static Tunnel Providers

- Hurricane Electric's tunnelbroker.net
 - Simple IP Protocol 41 tunnels.
 - They hand out /48s with a click.
 - Will speak BGP, in ways that are real multi-homing.
- Sixxs
 - Requires tunneling software. Very, very widely ported.
 - Can traverse most NATs.
 - Some POPs only offer /64 prefixes (1 subnet).
 - More bureaucratic.

Teredo

- Works through typical NATs that will pass UDP traffic with the help of a "teredo server".
- Only provides a single /128 address
- Can directly reach other teredo users over v4.

Happy Eyeballs (RFC6555)

- User friendliness algorithm, typically in browsers (Chrome, FF)
- Tries V4,V6 connections in parallel, and uses whatever finishes first.
- Good: user requests satisfied ASAP.
- Bad: not determinstic when you need to debug.

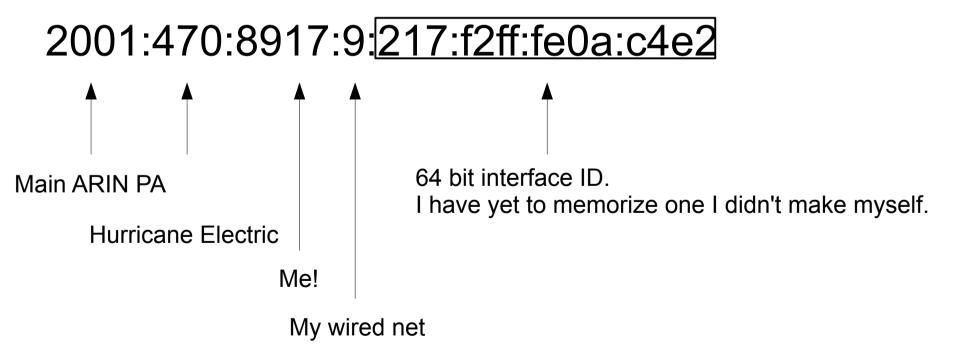
NAT

- Zealot's heads explode at the thought.
- You can get it if you need it.
- There are clever applications of multiaddressing with both globally unique and ULA addresses that reduce need of it.
- Applications like ghetto-multihoming and reducing renumbering pain from ISP changes are still lacking in a NAT free world. Multiaddressing is not a panacea.

RFC3484

- Introduces controls for controlling source and destination address selection, both v4 and v6
- Hackable in linux as /etc/gai.conf; FreeBSD with ip6addrctl
- Implemented on Windows, but the tables are not mutable
- Address selection is very important when there are many choices

Privacy Addresses (RFC4941)


- Generates random, throw away 64 bit interface identifiers in addition to "the" interface address.
- Can't hide your subnet, obviously.
- Default on: >= Windows Vista, >= OS-X 10.7
- Available on: XP, OS-X < 10.7, Linux, FreeBSD

Secure Neighbor Discovery (RFC3971)

- NDP (and v4 arp!) are easy to attack on shared networks, even if switched. I've done so against arp, in anger even (comcast dhcp fail).
- 64 bits is enough to do public-key crypto.
- Protects against the comcast fail I once had, as the subnet router would have ceased listening to the other guy.
- Not exactly common yet, if ever.

De-facto address structures

- The address family is flat, like v4 w/ CIDR.
- But in practice, there's structure that makes things slightly easier to remember.

De Jure address structure, Teredo

```
$ teredo-decode 2001:0:53aa:64c:2046:0674:a7e0:4a3e
addr = 2001:0:53aa:64c:2046:0674:a7e0:4a3e
server = 83.170.6.76
client = 88.31.181.193
port = 63883
flags =
flags_random = 8262 (0x2046)
2001:0 == Teredo
53aa:064c == Teredo Server, 83.170.6.76
2046 == 12 bit nonce + flags; no flags here
0674 == Obfuscated port number (port ^ 0xffff)
a7e0:4a3e == Obfuscated client IPv4 address
```

```
(address ^ 0xfffffff)
```

Neighbor Discovery

- In v6, the arp equivalent is an ICMP protocol, making clever use of link local and multicast addresses in a way that would be circular on v4.
- You don't really notice.
- ...Unless you're writing firewall rules and forget to allow it.