Trust Reflection

A distributed approach to PGP key signing at multi-day events

Joe Abley, ISC

NANOG 34
Seattle, WA, USA
About PGP

• General-purpose tool for data encryption and non-repudiation
• Most commonly (?) used for e-mail
• Used to sign source code (e.g. ISC, BIND)
• Effective encryption and non-repudiation depends on access to trusted copies of public keys
Web-of-Trust

• You don’t need to have personally signed someone else’s key in order to be able to trust it

• but you do need to have laid the groundwork for a web of trust by signing keys, and having your key signed

• Opportunistic use of PGP relies on regular, widespread key-signing
Key Signing Parties

• A method to equip a group of people with a list of known-trustworthy public key fingerprints

• Public keys can be retrieved from untrustworthy sources, and trusted (or not trusted) based on their fingerprints
Fingerprint Verification

- Someone reads out a fingerprint
- The owner of the fingerprint compares what is read aloud with a trusted copy of the fingerprint, and confirms whether it is accurate
- Everybody else follows along with a personal copy of the fingerprint, and annotates accordingly
Identity Verification

• Everybody takes appropriate steps to ensure that the person who just validated the public key fingerprint really is who they purport to be
 • government-issued photo-ID
 • reaction of others in the room
 • whatever suits the individual
Key Signing

- Obtain each public key
- Generate a local fingerprint of the public key
- Compare it with the trusted copy of the fingerprint obtained from the key signing party, annotated with notes on identity verification
- If the fingerprints match, sign the key
E-mail Verification

• Encrypt the exported, signed key towards the key itself

• Mail the encrypted, signed key to the addresses listed in the key’s uid

• The signature will only escape into the wild if the mail is able to be received by someone with the corresponding private key
Scaling Problems

- For a key-signing party of \(n \) people:
 - fingerprint verification scales linearly, \(O(n) \)
 - identify verification is quadratic, \(O(n^2) \)
 - key signing and e-mail verification do not have to happen at the key signing party
Scheduling Issues

- NANOG-Specific problems:
 - late on Monday night
 - overlaps with the NSP-SEC BOF, by virtue of the fact that NSP-SEC is useful and hence always runs late
Other Challenges

- People submit their public keys late
- People show up without a trusted copy of their public key fingerprint
- People don’t realise they need to actually generate a public key before any of this makes sense
- People only get one chance to get everything right
Other Approaches

- “Efficient Group Key Signing Method”, Len Sassaman
 - eliminates some of the horror of reading hexadecimal digits aloud
 - requires more preparation work on the part of attendees
 - doesn’t address the identity verification scaling problem at all
Conclusions

• Big key signing parties are tedious
• Finding time for a big key signing party at NANOG is difficult
• Having more key signing parties in each meeting would give people a better chance to participate
Trust Reflection

- Hold a series of much smaller key parties instead of one big one (e.g. max 8 people)
- Hold each key-signing party in an obvious, accessible and public place
- Rely on volunteers (trust reflectors) to attend all key signing parties, and to act as introducers between attendees at different parties
Hence, this:
becomes this:
NANOG 34

• PGP Key Signing Parties will be held in the last 10-15 minutes of every break, in the Terminal Room

• There will be a daily set of fingerprint sheets printed every morning, so submit your key the day before you plan to attend

• Bring a pen, photo ID and a trusted copy of your public key fingerprint
References

- http://www.nanog.org/pgp.abley.html
- http://www.cryptnet.net/fdp/crypto/gpg-party.html
- http://sion.quickie.net/keysigning.txt