

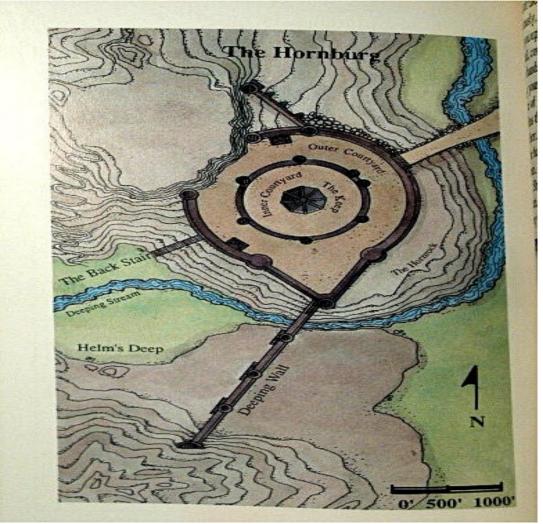
SELinux

Daniel J Walsh
SELinux Lead Engineer

0 Day Exploits

- Patch Cycle
 - Someone discovers a vulnerability in software
 - Package Maintainer and OS Vendor Notified
 - Fix generated/Distributed
 - Fix installed by users
- What protects you before the fix is installed?
- What happens if the wrong people find the problem and don't report it?
- Exploits that don't have a patch built for them are called 0-Day Exploits.
- What are attackers after?
 - Spam...
 - Where is the good stuff?

What is SELinux?


Mandatory Method (MAC)

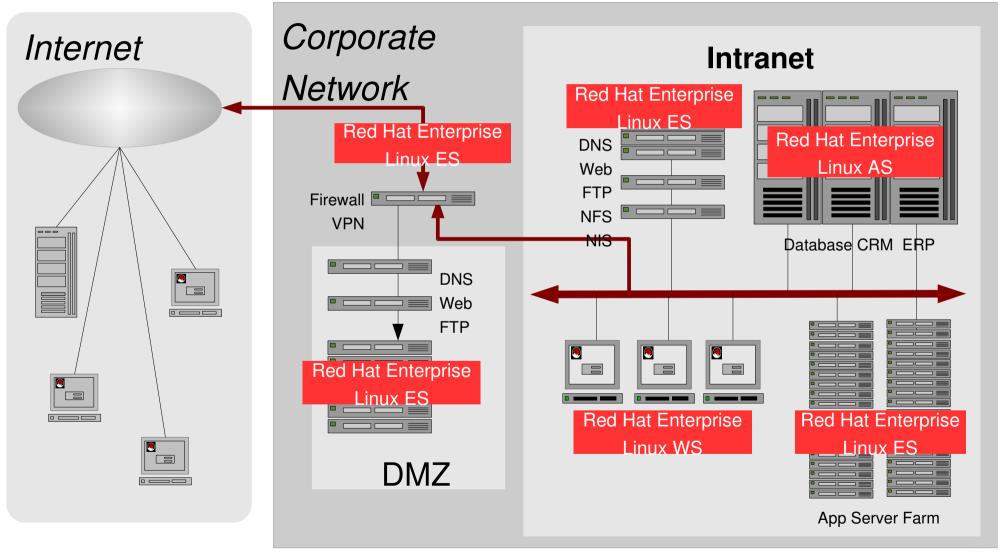
- Current systems use DAC (Discretionary Access Control)
- User/Programs has limited privilege
- Security policy set by administrator and enforced by the System
- Incorporates program function/trustworthiness into A/C decisions.
- Root compromises confined by policy

Compartmentalization Helms Deep – Lord of the Rings

Developed by the NSA

Building on 10 years of NSA's OS security research Application of NSA's Flask security architecture

- Cleanly separates policy from enforcement using well-defined policy interfaces
- Fine-grained controls over kernel services
- Transparent to applications and users
- Removes power of root
 - Several demo machines running root as guest account


Why should you use SELinux

SELinux kernel enforces MAC policies

- Confines programs/system servers to minimum privileges
 - Reduces or eliminates harm caused by compromised applications.
- root's power decomposed: Principle of least privilege.
- Traditional operating systems depend on
 - Correctness of the Kernel
 - All the privileged applications and their configurations
- SELinux kernel depends primarily on
 - Correctness of Kernel
 - Security policy configuration.

Where should you run SELinux?

SELinux Key Components - Kernel

Patch implementing security hooks

- Uses Linux Security Module (LSM)
- Framework for security enhancements to Linux
- OTHER Linux Security Modules have been written, but SELinux is the only one in widespread use.

SELinux Key Components - Policy

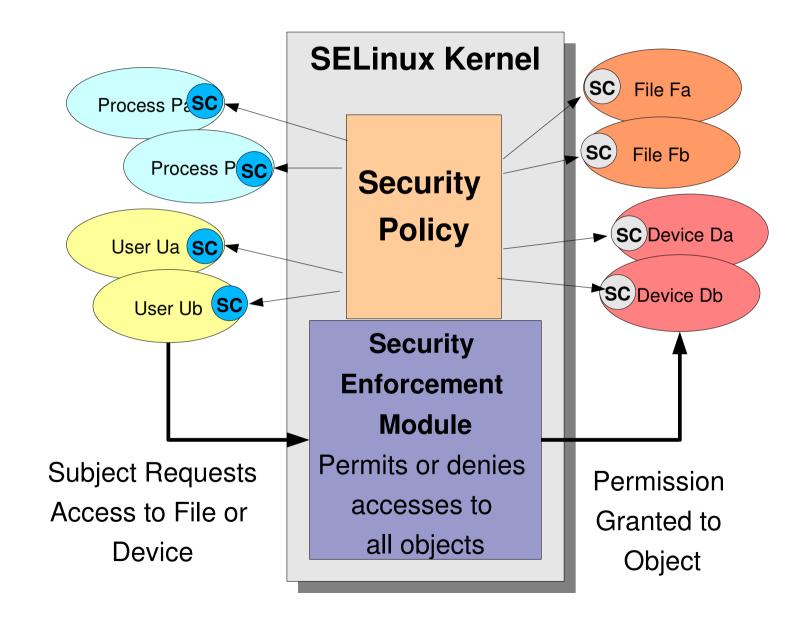
Strict

- A system where everything is denied by default.
 - You must specify allow rules to grant privileges
- SELinux designed to be a strict policy.
 - The policy rules only have allows, no denies.
 - Minimal privilege's for every daemon
 - separate user domains for programs like GPG,X, ssh, etc
- Difficult to enforce in general purpose Operating system.

SELinux Key Components - Policy

Targeted

- System where everything is allowed. use deny rules.
- Protects systems Doors and Windows
- By default processes run in unconfined_t.
 - unconfined processes have the same access they would have without SELinux running.
- Daemons with defined policy transition to locked down domains.
- httpd started from unconfined_t transitions to httpd_t which has limited access.



SELinux Key Components - Applications

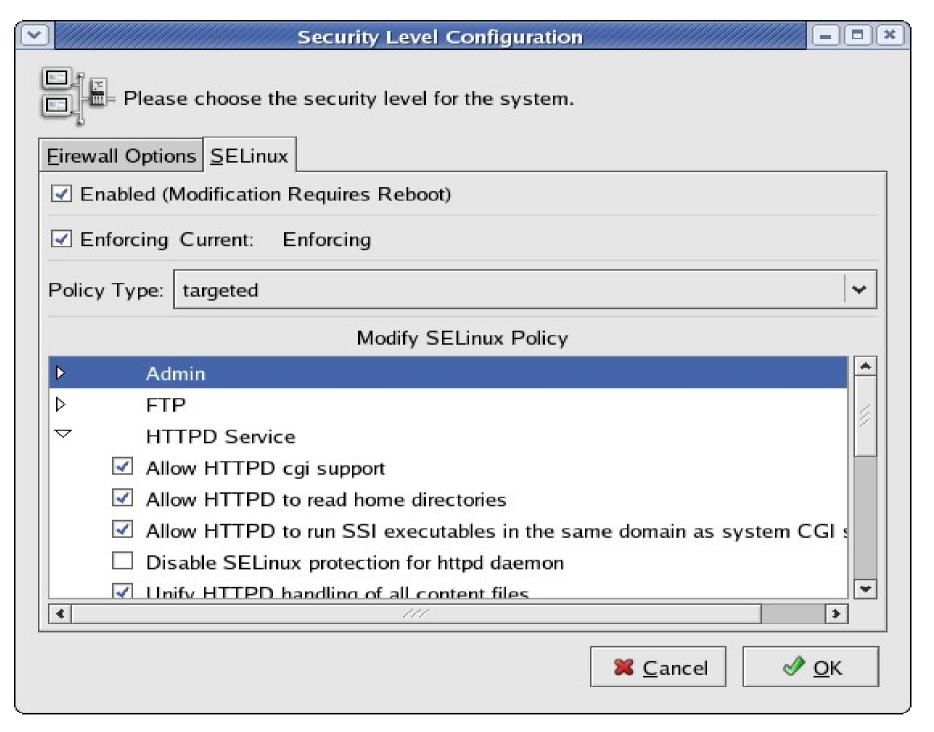
- Most user applications and server applications unchanged
- SELinux aware applications
 - Applications used to view or manipulate security contexts
 - Programs required to set user session security context
 - Examples: login/sshd, ls, cp, ps, setfilecon, logrotate, cron...
 - DBUS, Trusted-X

How SELinux Enforces Security Policy

Apache Example

- Apache executable unmodified
- System administrator might have three choices of policy
 - High Apache only can display html pages in /var/www/html
 - Medium Apache can run cgi-scripts in /var/www/cgi-bin
 - Low Apache can display pages in users home directories
- Cracker only has access to files that Apache had access too
 - If Apache had read access to /var/www/html that is all cracker can do.
 - Cracker can cause other pages to display.

Configuring Policy


Booleans

- Turn on/off sections of policy
 - setsebool -P allow_nfs_home_dirs 1
 - /etc/selinux/targeted/booleans

File Context

- chcon -R -t httpd_sys_script_rw_t /var/www/myapp/data
- chcon -t httpd_sys_script_t /var/www/cgi-bin/myapp
- /etc/selinux/targeted/contexts/files/file_contexts.local

Configuring Policy

Apache Example

- System administrator has multiple choices of policy
 - Booleans
 - httpd_disable_trans, httpd_enable_cgi httpd_enable_homedirshttpd_tty_comm, httpd_unified
 - File Context (sys and user versions of following)
 - httpd_sys_content_t, httpd_sys_script_exec_t, httpd_sys_script_ro_t, httpd_sys_script_rw_t, httpd_sys_script_ra_t
 - chcon -R -t httpd_sys_content_t /home/dwalsh/public_html
- http://fedora.redhat.com/docs/selinux-apache-fc3/
- man httpd_selinux

Configuring Policy

Writing Policy

- Requires selinux-policy-POLICYTYPE-sources
 - /etc/selinux/targeted/src/policy
- Tunables
- AVC messages in /var/log/messages or /var/log/audit.log

```
avc: denied { read write } for pid=6775 exe=/usr/sbin/crond name=null dev=tmpfs ino=2150 scontext=root:system_r:system_crond_t tcontext=system_u:object_r:null_device_t tclass=chr_file
```

- audit2allow -i /var/log/messages
 - allow system_crond_t null_device_t:chr_file { read write };
- make rules

SELinux in Fedora Core

- Fedora Core 2
 - Shipped with SELinux off by default
 - Defaulted to Strict Policy
 - Targeted policy available via Rawhide
- Fedora Core 3
 - Shipped with SELinux on by default
 - Targeted Policy with 10 targets
 - Strict policy available via Rawhide, requires a relabel
- Fedora Core 4
 - About to ship with SELinux on by default
 - Targeted Policy with 70 Targets
 - Strict policy available via Rawhide, requires a relabel

SELinux in RHEL 4

- SELinux is an installation option that is on by default
- Default policy is targeted policy
 - dhcpd mailman.te mysqld named nscd ntpd portmap postgresql squid syslogd winbind
- Strict Policy provided by professional services.
- Training
- Policy writing Services

SELinux Futures

- Additional "targets" for targeted policy
- Better lock down of executable stack
- Better controls over networking
 - IPSEC/Named Networks
 - Iptables Integration
- New Policies MLS
 - LSPP Compliance?
- Better control over user space
- Trusted X
- Compartmentalized Workstation

Q/A

More Information Red Hat Enterprise Linux Resource

http://www.redhat.com/software/rhel/

SELinux Resources

- http://www.nsa.gov/selinux
- http://fedora.redhat.com/projects/selinux/

Mailing Lists

- selinux@tycho.nsa.gov NSA List
- fedora-selinux-list@redhat.com Fedora SELinux List

